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Abstract
A quantitative structure–activity relationship analysis was conducted on two different series of pyridinylguanidines acting as
inhibitors of urokinase-type plasminogen activator using QuaSAR descriptors of molecular modeling software MOE. Multiple
linear regression analysis following a stepwise scheme was employed to generate QSARs that relate molecular descriptors to
uPA inhibitory activity data of the title compounds. Among the several QSARs generated by MLR analysis, the best models
were selected on the basis of their statistical significance and predictive potential. The interpretation of the selected QSAR
models suggest that uPA inhibitory activity of compounds in series 1 is influenced by their molecular shape, molecular
flexibility and halogen atoms in the molecule whereas the uPA inhibitory potency of compounds in series 2 is dependent on
molecular lipophilicity, number of double bonds and spatial orientation of bulky substituents in the molecule.
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Introduction

Metastasis is the cause of most cancer-related deaths.

The proteolytic degradationof the extracellular matrix is

recognized as a mechanism that plays an important role

in the metastatic process. Proteolytic enzymes are

required to mediate tumor cell invasion into adjacent

tissues and initiate the metastatic process [1]. Urokinase

plasminogen activator (urokinase, uPA) a trypsin-like

serine protease has been implicated in many cellular

processes such as tumorigenesis, cell proliferation and

migration, cell adhesion, angiogenesis and metastasis

[2–4]. The primary role of uPA is to convert

plasminogen into its active form plasmin [5]. Plasmin,

a serine protease, is involved in the degradation of

several extracellular matrix components, the key stage in

the process of angiogenesis and thus contributes to the

tumor cell survival and metastatic properties of cancer

cells [6]. Clinical studies have demonstrated that

increased expression of uPA in tumour tissues is highly

correlated with tumor cell migration, invasion, prolifer-

ation, progression and metastasis [7]. Additionally, it

has also been reported that uPA activity is increased

in metastatic tumors compared with primary tumors in

experimental animals [8]. The pivotal role of uPA in

tumor angiogenesis and metastases makes it a poten-

tially attractive target for preventing metastasis of

tumors.

Several small molecules have been identified as

potent inhibitors of uPA such as benzamidines,

phenylguanidines, acylguanidines and bisbenzami-

dines [6]. However, these compounds also inhibit

other related serine proteases such as tissue plasmino-

gen activator, plasmin and thrombin, which play a

significant role in the fibrinolytic cascade [6]. In order

to circumvent these unwanted adverse effects arising

out of inhibition of homeostatic enzymes, efforts were
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devoted to develop inhibitors with high degree of

selectivity towards uPA. Recently, Barber et al. [9,10]

reported two series of pyridinylguanidines with

selective uPA inhibitory activity. In view of further

progression in the development of such inhibitors, the

present study attempts to explore QSAR of both the

series of uPA inhibitory pyridinylguanidines reported

by Barber et al. QSAR is a powerful lead-compound

optimization technique, which quantitatively relates

variations in biological activity to changes in molecular

properties (descriptors). In other words, it attempts to

link activity data with descriptors chosen via identi-

fication of the “rules” that can be further used to guide

chemical synthesis when new chemical entities are

developed. In the past, many quantitative structure

activity relationship studies were performed on

potential uPA inhibitors to explore the structural

features determining the binding affinity and selectiv-

ity for the enzyme. Yang et al. [11] investigated the

features contributing to selective inhibition of uroki-

nase using Hansch analysis of a series of phenyl

guanidines exhibiting inhibitory activity against six

serine proteinases. Bhongade et al. [12,13] reported

comparative molecular field analysis and comparative

molecular similarity indices analysis of uPA inhibitory

indole/benzimidazole-5-carboxamidines. Related to

the foregoing and in continuation of our efforts

focused on the design and development of novel and

potent protease inhibitors targeting cancer, the

present work strives to examine the applicability of

QSAR approach to the series of pyridinyl guanidines

reported by Barber et al. [9,10] and gain some

fundamental understanding on factors influencing

uPA binding affinity of these molecules.

Materials and methods

The dataset investigated for QSAR study includes two

series of pyridinyl guanidines; series 1 and series 2.

Series 1 comprises of 16 compounds whereas series 2

comprises of 19 compounds. The structure of

molecules in Series 1 and Series 2 are presented in

Table I and Table II respectively. The uPA inhibitory

activity data of compounds in both the series have

been reported as IC50 values, where IC50 refers to the

experimentally determined micro-molar concen-

tration of the compounds in the selected series

required to inhibit the enzyme by 50%. The biological

activity values [IC50 (mM)] were transformed into

their molar scale and subsequently converted to

negative logarithmic scale and then used as the

response variable for the QSAR analysis.

The softwares employed for the present study are

Molecular Operating Environment [14] (MOE

2002.03), statistical software SYSTAT [15] (Version

10.2) and inhouse validation program VALSTAT

[16]. All the computations were carried out on

Compaq PIV workstation. The structures of the

compounds in the selected series were sketched using

builder module of MOE software and sketched

structures were subsequently energy minimized up to

root mean square gradient of 0.01 kcal/molÅ using

MMFF94 force field. Conformational search of each

energy-minimized structure was performed employing

stochastic search routine. All the conformers gener-

ated for each structure were carefully scrutinized in

conformational geometry panel and the lowest energy

conformer of each structure selected for re-optimiz-

ation by applying AM1 semi-empirical method as

implemented in semi-empirical molecular orbital

software program MOPAC (version 7) of MOE.

Molecular descriptors programmed into QuaSAR

module of MOE were calculated for the geometry-

optimized structures of the compounds in the series.

The MOE package calculates nearly about 180

descriptors named as QuaSAR descriptors [17]. The

QuaSAR descriptors can be broadly classified into 2D

and 3D descriptors. The two dimensional descriptors

include traditional physicochemical properties, (atom

counts and bond counts, mr, logP and vdw_area etc),

connectivity-based topological descriptors (Kier and

Hall connectivity and Kappa Shape indices; adjacency

and distance matrix descriptors), pharmacophore

feature descriptors (e.g. Donor, Acceptor, Polar,

Positive, Negative, Hydrophobic.), partial charge

descriptors based on Partial Equalization of Orbital

Electronegativities method and quantum chemical

descriptors such as HOMO and LUMO energies,

dipole, etc. The 3D descriptors in the module include

potential energy descriptors, surface area descriptors,

volume descriptors, shape descriptors, and confor-

mation-dependent charge descriptors.

The calculated descriptors were initially screened

for invariant nature (constant and near constant

values) to reduce the number of descriptors for

statistical analysis. Further reduction in the descriptor

pool was accomplished by eliminating the descriptors

with no significant correlation with the dependent

variable (R2 , 0.1) using QuaSAR-contingency mod-

ule of MOE. QuaSAR-Contingency is a statistical

application designed to assist in the selection of

descriptors for QSAR.

In the first step of statistical analysis, pairwise

correlation analysis of the reduced set of descriptors

was established by the calculation of correlation

matrix. If given pair of descriptors have a Pearson

correlation greater than 0.7, then one member of the

pair is randomly omitted for the QSAR study. As a

resultant, the descriptor pool is further reduced to 45

descriptors for series 1 and 52 descriptors for series 2.

This reduced descriptor pool was used in the

generation of QSAR models.

The QSAR models were found through forward

stepwise regression procedure employing statistical

program SYSTAT 10.2 version. The best QSAR

models were selected on the basis of the highest
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Table I. Structure, biological activity and physicochemical descriptors of series 1

N N

H2N NH2

R
6

5

4

3

.

S. No R BA (mM) 2 logBA petitjeanSC b_1rotR KierFlex

1 H 29.5 4.5302 1 0.1667 1.4283

2 3-CH3 37.7 4.4237 1 0.1905 1.6467

3 4-CH3 83.8 4.0768 1 0.1905 1.6467

4 5-CH3 32.3 4.4908 0.75 0.1905 1.6467

5 6-CH3 173.0 3.7619 1 0.1905 1.6467

6 4-C6H5 7.10 5.1487 0.8 0.1379 2.0737

7 4-OCH3 53.3 4.2732 0.75 0.2273 2.1281

8 3-OH 147.0 3.8327 1 0.2105 1.6467

9 3-OCH3 62.0 4.2076 1 0.2273 2.1281

10 5-Cl 10.0 5.0000 0.75 0.1667 2.2402

11 5-Br 3.13 5.5044 0.75 0.1667 2.7614

12 3,5-diCl 5.47 5.2620 0.75 0.1667 3.2121

13 3-Br, 5-Cl 4.83 5.3160 0.75 0.1667 3.8483

14 3-Cl, 5-Br 2.90 5.5376 0.75 0.1667 3.8483

15 3-Cl, 5-CF3 40.7 4.3904 1 0.1905 2.9205

16 3,5-diCl-4-Me 8.70 5.0605 0.75 0.1905 3.4314

Table II. Structure, biological activity and physicochemical descriptors of series 2

N N

H2N NH2

RCl

.

S.No R BA (mM) 2 logBA chi1v_C b_double E_sol PMI 2 Z logP (o/w)

1 (E)-CHvCHCO2H 1.5 5.8239 2.0267 3 215.3085 1328.947 1.04

2 (E)-CHvCHCONHMe 1.28 5.8928 2.0267 3 215.1895 1889.878 0.662

3 E)-CHvCHCO(1-morpholino) 2.1 5.6778 3.0267 3 215.4765 361.3822 0.425

4 (E)-CHvCHCONHCH2Ph 0.77 6.1135 4.2909 3 212.4917 1392.558 2.45

5 (E)-CHvCHCON(Me)CH2Ph 2 5.6990 4.2909 3 26.5011 2556.398 2.647

6 CH2CH2CO2H 9.31 5.0311 2.3231 2 214.8113 638.4941 0.572

7 OCH2CO2H 90.2 4.0448 1.4696 2 213.5755 609.7509 0.18

8 OCH2CONHCH2Ph 16.1 4.7932 3.7338 2 29.0434 353.2897 1.59

9 OCH2CH2OCH3 16.4 4.7852 1.6160 1 211.0577 1442.224 0.345

10 C6H5 166.3 3.7791 3.2767 1 29.12613 939.6092 2.679

11 OC6H5 2.13 5.6716 3.0267 1 212.9468 484.1166 2.329

12 OCH2C6H5 0.92 6.0362 3.3803 1 213.5082 2463.676 2.463

13 CuCC6H5 0.77 6.1135 3.7767 1 214.6776 1390.561 3.425

14 (E)-CHvCHC6H5 0.55 6.2596 3.9374 2 213.2539 1335.126 3.323

15 (E)-CHvCHC6H11 0.73 6.1367 4.8879 2 210.8807 118.8222 3.338

16 (E)-CHvCH(2-pyridinyl) 1.6 5.7959 3.3154 2 213.3939 1285.165 2.052

17 (E)-CHvCH(4-C6H4OMe) 0.69 6.1611 3.8481 2 212.8072 1330.748 3.279

18 E)-CHvCH[(3,4-OCH2O)C6H4] 0.49 6.3098 3.7647 2 214.2263 2392.332 3.028

19 (E)-CHvCH(3-C6H4CO2H) 0.17 6.7695 4.0981 3 214.1573 2820.975 3.037

C. Karthikeyan et al.8
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correlation coefficient (R2), the lowest standard error

SEE, F statistics and the statistical relevance of the

incorporated descriptors. Another important criterion

for the model selection is low variable collinearity

between the descriptors in the same model. To

confirm the absence of multicollinearity in the selected

correlations, variance inflation factor (VIF) values

[18] were calculated for each parameter in the

regression. VIF value was calculated from 1/1 2 R2,

where R2 is the multiple correlation coefficient of one

parameter’s effect regressed on the remaining par-

ameters. Although it is stated that VIF values less than

10 are statistically satisfactory, we chose a more

stringent criterion (VIF , 5) for selection of QSAR

models. The Z-score method was adopted for the

detection of outliers. Z-Score can be defined as

absolute difference between the value of the model

and the activity field, divided by the square root of the

mean square error of the data set. Any compound

which shows a value of Z-score higher than 2.5, during

generation of a particular QSAR model is considered

as outlier.

Finally, the stability and predictive ability of every

potential model was tested by a cross validation

method following a leave-one-out scheme using

inhouse program VALSTAT. The validation par-

ameters calculated are squared cross-correlation

coefficient (q2), standard deviation of sum of square

of difference between predicted and observed values

(SPRESS) and standard deviation of error of prediction

(SDEP). The validation parameter q2 describes the

stability of a regression model obtained by focusing on

the sensitivity of the model to the elimination of any

single data point and capacity to estimate the activity

of compounds outside the training set. For a reliable

QSAR model, the calculated squared cross-corre-

lation coefficient q2 should be greater than 0.6.

Results and discussion

QSAR model for series 1

The best QSAR model generated for uPA inhibitory

activity of compounds in Series 1 is given below

2log BA ¼ 21:712ð^1:248ÞPetitjeanSC

2 10:814ð^5:515Þb_1rot R

þ 0:281ð^0:183ÞKierFlex

þ 7:472ð^1:557Þ ð1Þ

N ¼ 16, R ¼ 0.94, R2 ¼ 0.89, SEE ¼ 0.21, F ¼ 33.28,

P . 0.000, Q2 ¼ 0.83, SPRESS ¼ 0.27, SDEP ¼ 0.24.

In QSAR model given above, N is the number of

data points and the figures in the parentheses are 95%

confidence limits.

Model 1 produces good description for uPA

inhibitory activity of pyridinyl guanidines, as it

accounts for more than 80% of the total variance in

the biological activity. The F statistic of the model is

significant at 99% level as the calculated F-test value

exceed the critical F value (F(3,12) ¼ 5.95) by a large

margin. Since the p value less than 0.01, there exist a

statistically significant relationship between the vari-

ables in the model at 99% confidence level.

Furthermore, the intercorrelation coefficient between

the descriptors in the model is less than 0.7 as

indicated by correlation matrix (Table III) and the

variance inflation factors of all the descriptors in the

model as shown in Table V are less than 5, which

indicate the absence of multicollinearity in the models.

The molecular descriptors in the model 1 include

petitjeanSC, KierFlex and b_1rotR. Among the three

descriptors found in the model, petitjeanSC and

KierFlex are topological descriptors and b_1rotR is a

constitutional descriptor, which indicates that vari-

ation in the uPA inhibitory activity of pyridinyl

guanidines can be described in terms of structural

components of the molecule. The topological

descriptor petitjeanSC refers to petitjean shape

coefficient, which encodes information regarding the

shape of the molecule. The regression coefficient of

the descriptor petitjeanSC bears a negative sign, which

suggest that shape of the molecule is an important

determinant for uPA inhibition exhibited by pyridinyl

guanidines. The topological descriptor KierFlex [19]

encodes the structural properties that restrict a

molecule from being “infinitely flexible”, the model

for which is an endless chain of C(sp3) atoms. The

value of KierFlex decreases with the presence

structural features considered to preventing a mol-

ecule from attaining infinite flexibility are fewer atoms,

cyclicity, branching, conjugation and presence of

atoms with a covalent radii smaller than C (sp3).

However, an observation of the substituents in the

pyridinyl ring indicates none of the substituents except

for phenyl ring seem to exhibit cyclicity, branching or

conjugation. So, it appears that descriptor might

actually characterize the covalent radii of the atoms in

the substituents. Hence, the positive coefficient of the

descriptor in the model may be interpreted that the

presence of atom with larger covalent radii than

carbon such as chlorine, bromine will increase the uPA

binding affinity of pyridinyl guanidines. The consti-

tutional descriptor b_1rotR [12] represents fraction of

Table III. Correlation matrix for series 1.

2 log BA petitjeanSC b_1rotR KierFlex

2 log BA 1.00 20.77 20.70 0.75

PetitjeanSC 20.77 1.00 0.38 20.59

b_1rotR 20.70 0.38 1.00 20.30

KierFlex 0.75 20.59 20.30 1.00

QSAR on uPA inhibitors 9
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rotatable single bonds in the molecule. The negative

coefficient of the descriptor in model suggests that

increase in the fraction of rotatable single bonds will

decrease the uPA inhibitory potency of pyridinyl

guanidines. Furthermore, it is quite evident from

Table I that fractional increase in number of rotatable

single bonds occurs with methoxy and hydroxyl

substitution in the pyridinyl ring hence it may be

interpreted that presence of aforementioned substi-

tuents is not conducive for uPA inhibitory activity.

The predictive potential of model 1 as judged by

leave-one-out procedure is fairly high (Q2 . 0.8)

suggesting that the models will be useful for mean-

ingful predictions. Further support in this regard is

obtained from the low values of the cross-validation

parameters Spress and Sdep. Predicted activity values

for the compounds in the training set alongwith their

corresponding experimental activity values are

recorded in Table VI. The predicted 2 log IC50 values

of the compounds in the test set are in good agreement

with the corresponding experimental values as shown

in Figure 1.

QSAR models for series 2

The best QSAR models generated for series 2 are

given below alongwith regression statistics as well as

crossvalidation statistics.

2log BA ¼ 0:544ð^0:164Þchi1v_C

2 0:156ð^0:069ÞE_SOL

þ 0:0003ð^0:0001ÞPMI 2 Z

þ 1:505ð^1:220Þ ð2Þ

N ¼ 18, R ¼ 0.92,R2 ¼ 0.85, SEE ¼ 0.28, F ¼ 26.86,

P . 0.000, Q2 ¼ 0.74, SPRESS ¼ 0.37, SDEP ¼ 0.33.

2log BA ¼ 0:419ð^0:099Þlog Pðo=wÞ

2 0:110ð^0:045ÞE_Sol

þ 0:272ð^0:139Þb_double

þ 2:935ð^0:748Þ ð3Þ

N ¼ 17, R ¼ 0.94, R2 ¼ 0.89, SEE ¼ 0.19, F ¼ 35.22,

P . 0.000, Q 2 ¼ 0.78, SPRESS ¼ 0.27, SDEP ¼ 0.24

Both the models given above manifest a satisfying

correlation, as they account for more than 80% of the

observed variance in the biological activity. Accuracy

in the analysis is shown by low values of standard error

of estimate. The F statistics are significant at 99% level

and the p value less than 0.000 indicates that the

models are not a mere result of chance. The

correlation matrix and VIF data recorded in

Tables IV and V respectively depicts the orthogonal

nature of the descriptors in the selected correlations.

In addition to statistical significance, the generated

models also exhibit good predictive capacity as shown

by cross-validation statistics given alongwith the

models. Both the models show predicted variance

greater than 70% since their Q2 values are greater than

0.7. It is also noteworthy that the PRESS statistics

(SPRESS) of the both the models are comparable to

their respective standard error of estimate (SEE),

suggesting that the models will be useful for

prediction. Predicted 2 log IC50 values of the

compounds in the training set together with the

experimental 2 log IC50 values are recorded in

Table VI. Plot of experimental versus predicted 2 log

IC50 values of the compounds in the training set for

model 2 and 3 is illustrated in Figures 2 and 3

respectively.

Model 2 shows linear positive dependence of uPA

inhibitory activity on topological descriptor chi1v_C,

steric descriptor PMI 2 Z and linear negative depen-

dence of activity on potential energy descriptor E_Sol.

The topological descriptor, chi1v_C [12] encodes

information regarding degree of branching, cycliza-

tion, heteroatom content, and heteroatom position in

0

1
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4
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6

0 1 2 3 4 5 6
Experimental activity
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Figure 1. Experimental vs predicted activity of model 1.

Table IV. Correlation matrix for series 2.

2 logBA chi1v_C B_double E_sol PMI 2 Z logP(o/w)

2 logBA 1.00 0.55 0.36 20.37 0.48 0.54

chi1v_C 0.55 1.00 0.10 0.37 0.17 0.86

b_double 0.36 0.10 1.00 20.15 0.20 20.19

E_sol 20.37 0.37 20.15 1.00 20.02 0.24

PMI 2 Z 0.48 0.17 0.20 20.02 1.00 0.31

logP(o/w) 0.54 0.86 20.19 0.24 0.31 1.00

C. Karthikeyan et al.10
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the molecule and is calculated as follows:

chi1v_C ¼
X

dv
i d

v
j

� �21=2

ð4Þ

Where dv
i and dv

j are the vertex connectivity indices

of carbon atoms i and j, respectively, and the

summation extends to all bonded pairs of non

hydrogen carbon atoms in the group or molecule.

For second and third rows of atoms, Kier [19] gave a

unified definition of dv, as expressed by Equation 5. In

this equation, Zv
i is the number of valence electrons of

atom i, hi is the number of hydrogen atoms attached to

it, and Zi is its atomic number.

dv
i ¼ ðZv

i 2 hiÞ=ðZi2Zv
i 2 1Þ ð5Þ

The value of the dv
i increase with branching and with

increase in the number of heteroatoms in the

molecule. Thus, the positive coefficient of the

descriptor in model 3 implies that increase in

molecular branching and presence of heteroatoms in

the molecule will decrease the uPA inhibitory potency

of pyridinyl guanidines.

The steric descriptor PMI 2 Z refers to the

principal moment of inertia along Z-axis of the

molecule. The positive coefficient of the descriptor

suggests that orientation of molecular distribution

along Z-axis of the molecule is conducive for the uPA

inhibitory potency of pyridinyl guanidines. Moreover,

the appearance of the descriptor also highlights the

likelihood of shape specific steric interactions between

molecules and the receptor. The potential energy

descriptor E_Sol bears a negative coefficient in model

3, which indicates that increase in the solvation energy

of the molecule will decrease the uPA binding affinity

of pyridinyl guanidines.

Model 3 comprises of the following descriptors;

lipophilicity descriptor logP(o/w), potential energy

descriptor E_Sol and constitutional descriptor

b_double. The descriptor logP(o/w) refers to log of

the octanol/water partition coefficient of the molecule

and is considered as a measure of lipophilicity of a

molecule. The positive coefficient of the descriptor in

model 3 suggests that increase in the overall

lipophilicity of the molecule will in turn increase the

uPA inhibitory activity of pyridinyl guanidines. The

negative coefficient associated with potential energy

descriptor E_Sol reaffirms the conclusions drawn

from model 2. The third descriptor b_double in model

3 represents number of double bonds in the molecule.

From the positive coefficient of this term it appears

that increase in the number of double bonds in the

molecule have a beneficial effect on the uPA inhibitory

activity shown by pyridinyl guanidines. As it can be

seen form table the descriptor values are larger when

an intermittent double bond is present in the side

Table V. Variance inflation factor (VIF) value of descriptors in

QSAR models.

Model No Parameters VIF

Model 1 PetitjeanSC 1.66

b1rotR 1.17

KierFlex 1.56

Model 2 chi1v_C 1.22

E_sol 1.18

PMI 2 Z 1.03

Model 3 b_double 1.03

E_sol 1.04

logP(o/w) 1.07

Table VI. Predicted activity values of selected models.

Series 1 Series 2

S. No 2 logBA Predicted activity of Model 1 2 logBA Predicted activity of Model 2 Predicted activity of Model 3

1 4.5302 4.2920 5.8239 5.3329 5.8936

2 4.4237 4.1166 5.8928 5.4878 5.6459

3 4.0767 4.1781 5.6778 5.6856 5.6233

4 4.4908 4.6426 6.1135 6.2420 6.1681

5 3.7619 4.2339 5.6989 5.5741 5.4028

6 5.1487 5.2213 5.0310 5.3285 5.4378

7 4.2733 4.3869 4.0448 4.8388 NA*
8 3.8327 3.9713 4.7932 5.1826 5.2746

9 4.2076 3.7601 4.7852 4.4258 4.3739

10 5.0000 5.0184 3.7791 NA* NA*
11 5.5044 5.1105 5.6716 5.2796 5.6009

12 5.2620 5.2925 6.0362 6.2613 5.6597

13 5.3160 5.5237 6.1135 6.3142 6.3304

14 5.5376 5.4399 6.2596 6.1225 6.3503

15 4.3904 4.5799 6.1367 5.7474 6.0719

16 5.0605 5.1003 5.7959 5.8036 5.8212

17 6.1611 6.0032 6.2858

18 6.3098 6.5722 6.3229

19 6.7695 6.8517 6.5341

*Outlier compounds

QSAR on uPA inhibitors 11
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chain at carbon-3 of pyridine ring. The positive effect

of intermittent double bond may be attributed to the

fact that incorporation of the double bond makes the

molecule assume a trans configuration and orients

the substituents attached to the double bond to the

opposite direction of the pyridinyl ring which in turn

might help in the interaction of the molecule with the

enzyme.

Compound number 9 was found to be a statistical

outlier (Z score .22.72551) during the development

of model 2 while compounds 9 and 6 were found to be

successive outliers in model 3. The reason for outlying

behavior of compound 9 may be attributed to the steric

hindrance owing to presence of a phenyl substitution

vicinal to guanadino moiety in the pyridine ring.

Furthermore, the phenyl ring is directly linked to the

pyridinyl ring form a biphenyl like structure, which

may not permit proper orientation of the guanidino

group in the active site of the enzyme. However, the

reason for outlying behavior of compound 6 is not

immediately apparent and merits further studies.

Conclusion

Finally to summarize, two series of pyridinyl

guanidines reported by Barber et al. have been

analyzed applying a QSAR approach. For the 16

compounds evaluated for uPA inhibitory activity in

series 1, a statistically satisfactory QSAR model is

developed with topological descriptors Petitjean shape

coefficient, Kierflex and constitutional descriptor

b_1rotR. Structural information encoded by the

aforementioned descriptors suggests that uPA binding

affinity of the compounds studied is dependent upon

molecular shape, presence of halogen atoms and

molecular flexibility. Furthermore, the predictive

ability of the model was established by cross-validation

procedure following a leave-one-out scheme.

Two QSAR models of good statistical quality and

predictive capacity were generated for describing upA

inhibitory activity of compounds in series 2. The

interpretation of the models suggest that uPA

inhibitory activity of pyridinyl guanidines in series 2

increases with lipophilicity of molecules while

decreases with molecular branching and increase in

the heteroatom content of the molecule. The models

also highlight the possibility of shape specific steric

interactions between the molecules and the enzyme.
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Figure 3. Experimental vs predicted activity of model 3.
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